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Abstract—It is vital to closely track the operation statuses
of network-internal links. Accurate knowledge of the operation
statuses of network-internal links is vital for the management
of many networks like the Internet, the satellite communication
network, etc. Network boolean tomography can identify con-
gested links just using end-to-end path status observations, and
is able to work efficiently even without any available cooperation
of internal nodes. Nevertheless, it heavily assumes that all the
path status observations collected are true while some Byzantine
attacks, e.g., the label flip attacks, could violate this assumption.
In this paper, we present a performance evaluation of network
boolean tomography under Byzantine attacks. Qur results against
various attacking rates, locations, and scales all show that Byzan-
tine attacks could cause a significant performance degradation
of network boolean tomography, suggesting a pressing need of
developing the detection and countermeasure techniques.

Index Terms—network boolean tomography, congested link
identification, end-to-end measurement, Byzantine attacks

I. INTRODUCTION

Network boolean tomography [1] is a potent tool for
localizing traffic congestion or jamming in communication
networks. It could be well applied to various types of networks,
like the Internet, IoT, satellite, and space communication
networks, where it helps identify and understand the effects of
signal jamming, transmission interference [2], and bandwidth
consumption attacks, etc. Note that though the structure of
the satellite network is rather dynamic, its routing topology
is technically virtualized as static, making netowrk boolean
tomography also an appealing tool for monitoring network
performance of satellite networks. To evaluate internal com-
munication jamming is a fundamental aspect of network man-
agement. It enables network administrators to quickly detect
and troubleshoot issues, plan for future capacity needs, harden
network security, optimize costs associated with network us-
age, and so on. However, almost all of today’s communication
networks are known vulnerable to a wide range of attacks [3],
[4], including Byzantine attacks [5], which can significantly
impact the performance of network boolean tomography.

Network boolean tomography first quantifies and gathers the
binary status of paths (i.e., “good” or “bad”) by comparing

* Corresponding author: Shengli Pan was also with the Key Laboratory
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Beijing University of Posts and Telecommunications
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(a) With no attack

T Correctly X Wrongly
v

(b) Byzantine attacks

Fig. 1. Illustration of network boolean tomography [6] with and without
attacks. There are two congested links depicted in red and bold solid arrows.
In (a), both congested links are correctly identified while in (b), not only
neither of them are detected, but three other links are even wrongly identified.

their performance observations to a predefined threshold, e.g.
in Fig. 1(a), the observed packet loss ratio of a path greater
than 1% will indicate that it gets a bad or congestion sta-
tus; otherwise, its status is good [6]. These observed path
statuses then are reasoned by the Bayesian framework of
Maximum A Posteriori (MAP) attribution to identify con-
gested links. However, the MAP problem here is normally
NP-hard. To circumvent the NP-hardness, [7] proposed the
“CLINK"” algorithm for a greedy identification, while the
“SCFS” algorithm of [6] chose to remove any prerequisite
of links’ prior congestion probabilities and simplified it as
a Maximum Likelihood Estimation (MLE) problem. Besides
the NP-hardness, there were also works to address other
issues like probing [8], scalability [9], [10], dynamic routing,
identifiability [11], sparsity [12], and so on.

Nonetheless, most of the existing works on network boolean
tomography assume a benign scenario. More specifically, they
tacitly require all the measurements obtained to be dependable.
This becomes increasingly demanding in today’s Internet,
in the context of the growing number and sophistication of
both cyber threats and attacks [3]. One commonly-discussed
threat would be Byzantine attacks [S], where the compro-
mised participants will not always behave in accordance with
the measurement protocol [13], but can report their results
dishonestly during the measurement collection procedure. As
illustrated in Fig. 1(b), after the third edge node (i.e., the
one with its congested/bad status changed to “good”) from
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O Require knowledge of peer networks’ link performances
to better deploy services, but have no direct monitoring
access.

O Rely on end-to-end measurements to indirectly infer
these link performances of peer networks, normally using

MAP strategy.
QO The ill-posed nature of above inference problems gives
C 1 Wrongl:
YV e Y X
O Good 4)( @ Bad
‘/ ‘/ B Attack
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Evaluating Network Boolean Tomography under Byzantine Attacks
Haotian Deng (& : haotian_deng@bupt.edu.cn) and

O End nodes could be the Byzantine ones that are able to
falsify the observation results of path statuses, e.g.,
reporting “1” for being congested while a path gets
a "normal” status of “0”.

correctly ‘ identified wrongly ‘videntified

1 L 1 -
MAP : [0} — |1 MAP : |:1:| — |0
m 0 n 2 0 5

O Under a Byzantine adversary setup, does network
boolean tomography still perform well? If not, what
degradation will it have?

(a) With no attack (b) Byzantine attacks

Fig. 1. Illustration of network boolean tomography [6] with and without
attacks. There are two congested links depicted in red and bold solid arrows.
In (a), both congested links are correctly identified while in (b), not only
neither of them are detected, but three other links are even wrongly identified.

0 "0 stands for “normal” while ”1” indicates "congestion”.
i { Y1,Y2 € {0,1} T1,%2,23 € {0,1}

O Network boolean tomography

employs the MAP strategy to z; 2
infer unknown statuses of each MAP: | .| —|.
link from path status :
observations. S L

Preliminaries

“Topology Zoo” dataset'; 1000 times repeated for each
scenario; 20 times repeated for Byzantine attack.
= Thitp://www.topology-zoo.org/index.html

QO Evaluations (1/2) of the effectiveness of Byzantine

attacks against network boolean tomography
o Significant
performance
degradations
MAP is the
most
vulnerable
Heterogeneity
makes it

[ With no attack

= Byzantine attacks
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o The location of the attacked links makes a difference.

o The root link is the most vulnerable while the edge link is
comparably robust to Byzantine attacks.

Q Evaluations (2/2) of the optimality of Byzantine attacks
against network boolean tomography- r«ee - cros

B SCFS CLINK  mE MAP

Relative Depth

Relative Breadth

Performance Degradation

ﬂ Blpnmme

r
Given a constrained attack capacity of the advgf'smé";{ly:
o "Depth” of the attacking surface is “better” than the

“breadth”.
o Accordingly, heavier the attack, better the attack gain.

# of congested paths

| Conclusion

O The inference uniqueness against the ill-posed nature of
network boolean tomography makes it vulnerable to
Byzantine attacks.

O Network heterogeneity, attack location, and attack depth
all will make a great difference to the attack gain.

QO Attack-resilient network boolean tomography techniques
are needed, e.g., Al empowered network boolean
tomography.

Evaluating Network Boolean Tomography under Byzantine Attacks,
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